△ABC中,外角∠ACD的平分线与∠ABC的平分线交于A1,∠A1BC与∠A1CD的平分线交于点A2,

1个回答

  • ∵∠A+∠ABC+∠ACB=180

    ∴∠ABC+∠ACB=180-∠A

    ∵∠ACD=180-∠ACB,CA1平分∠ACD

    ∴∠A1CD=∠ACD/2=(180-∠ACB)/2=90-∠ACB/2

    ∵BA1平分∠ABC

    ∴∠A1BC=∠ABC/2

    ∵∠A1CD是△A1BC的外角

    ∴∠A1CD=∠A1+∠A1BC=∠A1+∠ABC/2

    ∴∠A1+∠ABC/2=90-∠ACB/2

    ∴∠A1=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2

    同理可得:

    ∠A2=∠A1/2=∠A/4

    ∠A2=∠A/2²

    依次类推:∠An=∠A/2 ⁿ

    则当∠A=64,n=4时,∠A4=∠A/2⁴=64/2⁴=4°