f(x)=√3cos^2x+sinxcosx-√3/2
=√3(1+cos2x)/2+1/2*sin2x-√3/2
=√3/2+√3/2*cos2x+1/2*sin2x-√3/2
=√3/2*cos2x+1/2*sin2x
=sin(2x+π/3)
所以:f(x)=sin(2x+π/3)
T=2π/|ω|=π
最小正周期:π
f(x)=√3cos^2x+sinxcosx-√3/2
=√3(1+cos2x)/2+1/2*sin2x-√3/2
=√3/2+√3/2*cos2x+1/2*sin2x-√3/2
=√3/2*cos2x+1/2*sin2x
=sin(2x+π/3)
所以:f(x)=sin(2x+π/3)
T=2π/|ω|=π
最小正周期:π