圆锥曲线复习 (16 17:17:43)

2个回答

  • 设A(x1,y1),B(x2,y2),中点P(x0,y0)

    (1)kOA=y1/x1,kOB=y2/x2

    ∵ OA⊥OB

    ∴ kOAkOB=-1

    ∴ x1x2+y1y2=0

    ∵ y1^2=4x1,y2^2=4x2

    ∴ y1^2/4* y2^2/4+y1y2=0

    ∵ y1≠0,y2≠0

    ∴ y1y2=-16

    ∴ x1x2=16

    (2)∵ y1^2=4x1,y2^2=4x2

    ∴ (y1-y2)(y1+y2)=4(x1-x2)

    ∴ (y1-y2)/(x1-x2)=4/(y1+y2)

    ∴kAB=4/(y1+y2)

    ∴ 直线AB y-y1=4/(y1+y2)(x-x1)

    ∴ y=4x/(y1+y2)+y1-4x1/(y1+y2)

    ∴ y=4x/(y1+y2)+(y1^2-4x1+y1y2)/(y1+y2)

    ∵ y1^2=4x1,y1y2=-16

    ∴ y=4x/(y1+y2)-16/(y1+y2)

    ∴ y=4(x-4)/(y1+y2)

    ∴ AB过定点(4,0)

    (3)设OA∶y=kx,代入y^2=4x

    得:x=0,x=4/k^2

    ∴ A(4/k^2,4/k)

    同理,以-1/k代k得B(4k^2,-4k)

    ∴ x0=2(k^2+1/k^2),y0=2(1/k-k)

    ∵k^2+1/k^2=(1/k-k)^2+2

    ∴x0/2=(y0/2)^2+2

    即y0^2=2x0-8

    ∴ 中点P轨迹方程为y^2=2x-8

    (4)直线AB过定点P(4,0)

    S△AOB=S△AOP+S△BOP=1/2*OP*(|y1|+|y2|)=2(|y1|+|y2|)≥4根号(|y1y2|)=16

    当且仅当|y1|=|y2|=4时,等号成立