v=∫∫f(x,y)dσ区域D
=∫(0-4)dx∫(0-4)x^2+y^2+1dy
=∫(0-4)dx(x*x*y+1/3y*y+y)|(4-0)
=∫(0-4)(4*x*x+76/3)dx
=(4/3x^3+76x/3)|(4-0)
=560/3
注:“(0-4)”为x,y的区域,“|(4-0)”为消去积分后分别带入4和0作差.
v=∫∫f(x,y)dσ区域D
=∫(0-4)dx∫(0-4)x^2+y^2+1dy
=∫(0-4)dx(x*x*y+1/3y*y+y)|(4-0)
=∫(0-4)(4*x*x+76/3)dx
=(4/3x^3+76x/3)|(4-0)
=560/3
注:“(0-4)”为x,y的区域,“|(4-0)”为消去积分后分别带入4和0作差.