f(x)=(-2x+1)/(3x²)
定义域x∈R,且x≠0
f(x)=(-2x+1)/(3x²)
=1/3*1/x²-2/3*1/x
设t=1/x,t∈R,t≠0
y=1/3*t²-2/3t
=1/3(t-1)²-1/3
t=1时,y取得最小值-1/3
∴y≥-1/3,(t=2时,y=0)
∴函数值域为[-1/3,+∞)
f(x)=(-2x+1)/(3x²)
定义域x∈R,且x≠0
f(x)=(-2x+1)/(3x²)
=1/3*1/x²-2/3*1/x
设t=1/x,t∈R,t≠0
y=1/3*t²-2/3t
=1/3(t-1)²-1/3
t=1时,y取得最小值-1/3
∴y≥-1/3,(t=2时,y=0)
∴函数值域为[-1/3,+∞)