帮我做做这道题 写在纸上拍下来 清楚简洁

1个回答

  • (1)∵Sn+1-3Sn-2n-4=0(n∈N+) ①

    ∴Sn-3Sn-1-2(n-1)-4=0(n∈N+) ②

    ①-②得an+1-3an+2=0,

    即an+1+1=3(an+1)

    ∴{an+1}是首项为5,公比为3的等比数列.

    ∴an+1=5•3n-1,

    即an═5•3n-1-1.

    (2)∵f(x)=anx+an-1x2+…+a1xn,

    ∴f′(x)=an+2an-1x+…+na1xn-1

    ∴bn=f′(1)=an+2an-1+…+na1 ③

    ∴3bn=3an+3•2an-1+…+3•na1

    =an+1+2an+…+na2④

    ④-③,得

    2bn=an+1+an+…+a2-na1

    =Sn+1-(n+1)a1

    =a1(1−3n+1)/1−3−(n+1)a1

    =2(3n+1-1)-4(n+1)

    =2•3n+1-4n-6

    ∴bn=3n+1−2n−3.

    令g(x)=3x+1-2x-3.

    ∴g′(x)=3x+1ln3-2.

    当x>1时,

    3x+1ln3-2>0.

    ∴g(x)在[1,+∞)上是增函数.

    ∴{bn}是递增数列.