(1)∵Sn+1-3Sn-2n-4=0(n∈N+) ①
∴Sn-3Sn-1-2(n-1)-4=0(n∈N+) ②
①-②得an+1-3an+2=0,
即an+1+1=3(an+1)
∴{an+1}是首项为5,公比为3的等比数列.
∴an+1=5•3n-1,
即an═5•3n-1-1.
(2)∵f(x)=anx+an-1x2+…+a1xn,
∴f′(x)=an+2an-1x+…+na1xn-1
∴bn=f′(1)=an+2an-1+…+na1 ③
∴3bn=3an+3•2an-1+…+3•na1
=an+1+2an+…+na2④
④-③,得
2bn=an+1+an+…+a2-na1
=Sn+1-(n+1)a1
=a1(1−3n+1)/1−3−(n+1)a1
=2(3n+1-1)-4(n+1)
=2•3n+1-4n-6
∴bn=3n+1−2n−3.
令g(x)=3x+1-2x-3.
∴g′(x)=3x+1ln3-2.
当x>1时,
3x+1ln3-2>0.
∴g(x)在[1,+∞)上是增函数.
∴{bn}是递增数列.