一道三角函数的题,在三角形ABC中,设a+c=2b,A-C=π/3,求sinB的值.

1个回答

  • sinA +sinC = 2sinB

    2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB

    sin[(A+C)/2] * cos(π/6) = sinB

    因为A + B + C = π

    所以:(A+C)/2 = π/2 - B/2

    cos(B/2) * √3/2 = 2sin(B/2)cos(B/2)

    显然B/2不等于π/2,cos(B/2)不等于0

    所以:

    sin(B/2) = √3/4

    cos(B/2) = √13/4

    sinB = 2sin(B/2)cos(B/2) = √39/8

    参考:

    因为 a+c=2b

    由正弦定理可以知道 sinA+sinC=2sinB ①

    由 积化和差公式 知

    sinA+sinC=2* sin[(A+C)/2]* cos[(A-C)/2]

    因为A+B+C=180°,A-C=60°

    所以

    sinA+sinC=2* sin[(A+C)/2]* cos[(A-C)/2]

    =2*sin(90°-B/2)*cos30°

    =√3cos(B/2) ②

    由①②两式得

    2sinB=√3cos(B/2)

    而sinB=2sin(B/2)*cos(B/2)

    所以

    4sin(B/2)*cos(B/2)=√3cos(B/2)

    得sin(B/2)=√3/4

    因为B/2一定是锐角,

    所以cos(B/2)=√13/4

    所以

    sinB=2sin(B/2)*cos(B/2)=√39/8