多元函数可导的条件是什么最近,刚接触多元函数,有问题涉及到多元函数的可导,想咨询究竟什么叫可导,与偏导有什么异同?

1个回答

  • 呵呵 多元函数可导啊~ 这么说吧 我们举一个最简单的例子 f(x,y)=X+Y 这个函数对于 x 和 y 的偏导(函)数 都是 1 对吧? 但是对于 x 的偏导 是在将y视为 常数的情况下得出的 同理 y的也是一样 我们通过 逼近 来理解的话 就是这样: 假设 要求 此函数 在原点的 x的偏导数 就是将 纵坐标 当成0 横坐标 不断逼近 0 的结果 而y的偏导数 就是将 横坐标 当成0 纵坐标 不断逼近 0 的结果 即是 沿着一条直线 不断趋近 所得到的结果 而所谓的函数 可导 条件将会苛刻很多 那就是 不管 x y 沿何种方式 (沿曲线啦 抛物线啦 三角函数线啦等等 ) 趋近原点 所得结果尽皆相同 则此函数 在此点有 导数 这就是多元函数的真正意义! 当然 这是理解的方法 不是确切的定义 您对着书 再看看吧……

    采纳哦