已知a=2√3,A=60°
根据正弦定理得
a/sinA=b/sinB=c/sinC
即2√3/sin60=b/sinB=c/sin(120-B)
故b=3sinB,C=3sin(120-B)
故b+c=3sinB+3sin(120-B)
=3[sinB+sin120cosB-cos120sinB]
=3[sinB+√3cosB/2+sinB/2]
=3[(3/2)sinB+(√3/2)cosB]
=3√3[√3/2sinB+(1/2)cosB]
=3√3sin(B+30)
在锐角三角形ABC中,
因0