a1+2a2+...+nan=n(n+1)(n+2)
a1+2a2+..+(n-1)a(n-1)=(n-1)n(n+1)
两式相减:
nan=n((n+1)(n+2)-(n-1)(n+1))
an=n^2+3n+2-n^2+1
=3n+3
a1=1*2*3=6也满足此式
所以an通项公式an=3n+3,n∈N
a1+2a2+...+nan=n(n+1)(n+2)
a1+2a2+..+(n-1)a(n-1)=(n-1)n(n+1)
两式相减:
nan=n((n+1)(n+2)-(n-1)(n+1))
an=n^2+3n+2-n^2+1
=3n+3
a1=1*2*3=6也满足此式
所以an通项公式an=3n+3,n∈N