求一阶导数y=arccosx/√1-x^2

1个回答

  • y=[arccos(x/√1-x^2)]

    (cosy)^2=x^2/(1-x^2)

    1/(cosy)^2=(1-x^2)/x^2

    1/(cosy)^2=1/x^2-1

    隐函数求导!

    [1/(cosy)^2]'=[1/x^2-1]'

    [1/(cosy)^2]'=-2/x^3

    S=t^(-2)

    t=cosy

    y=f(x)

    复合函数求导

    (S't)*(t'y)*(y'x)=-2/x^3

    [-2t^(-3)]*(siny)*(y'x)=-2x^3

    [-2(cos[arccos(x/√1-x^2)])^(-3)]*(sin[arccos(x/√1-x^2)])*(y'x)=-2x^3

    (y'x)=x^3/{[(cos[arccos(x/√1-x^2)])^(-3)]*(sin[arccos(x/√1-x^2)])}