y=[arccos(x/√1-x^2)]
(cosy)^2=x^2/(1-x^2)
1/(cosy)^2=(1-x^2)/x^2
1/(cosy)^2=1/x^2-1
隐函数求导!
[1/(cosy)^2]'=[1/x^2-1]'
[1/(cosy)^2]'=-2/x^3
S=t^(-2)
t=cosy
y=f(x)
复合函数求导
(S't)*(t'y)*(y'x)=-2/x^3
[-2t^(-3)]*(siny)*(y'x)=-2x^3
[-2(cos[arccos(x/√1-x^2)])^(-3)]*(sin[arccos(x/√1-x^2)])*(y'x)=-2x^3
(y'x)=x^3/{[(cos[arccos(x/√1-x^2)])^(-3)]*(sin[arccos(x/√1-x^2)])}