a1=a
a2=2a/(a+1)
a3=2a2/(a2+1)=4a/(3a+1)
a4=2a3/(a3+1)=8a/(7a+1)
a(n+1)=2an/(an+1)
取倒数
1/a(n+1)=(an+1)/2an=1/(2an)+1/2
1/a(n+1)-1=1/(2an)-1/2=1/2(1/an-1)
所以1/an-1等比,q=1/2
1/an-1=(1/a-1)*(1/2)^(n-1)=(1-a)/[a*2^(n-1)]
an=1/[1+(1-a)/[a*2^(n-1)]]=a*2^(n-1)/[a*2^(n-1)-a+1]