an=3n-1,bn=2^n,设Tn=anb1+a(n-1)b2+……+a1bn(n∈N+),证明:Tn+12=-2an

1个回答

  • 应该消掉a1,.,an,留下2^2,.,2^n等

    Tn=2an+2²a(n-1)+2∧3a(n-2)+…+2∧na1①

    2Tn=2²an+2∧3a(n-1)+2∧4a(n-2)+…2∧(n+1)a1②

    错位相减法an=3n-1即an-a(n-1)=a(n-1)-a(n-2)=.=a2-a1=3

    ②-①Tn=-2an+2²[an-a(n-1)]+2∧3[a(n-1)-a(n-2)]+…+2∧n[a2-a1]+2∧(n+1)a1

    =-2an+3*2²+3*2∧3+…+3*2∧n+2∧(n+1)*2

    =-2an+3(2²+2∧3+…+2∧n)+2∧(n+2)

    =-2an+3[-4+2^(n+1)]+2∧(n+2)

    =-2(3n-1)-12+3*2^(n+1)+2*2∧(n+1)

    =5*2^(n+1)-6n+2-12

    左边=Tn+12=5*2^(n+1)-6n+2-12+12=5*2^(n+1)-6n+2

    右边=-2an+10bn

    =-2(3n-1)+10*2^n

    =-2(3n-1)+5*2*2^n

    =-6n+2+5*2^(n+1)

    即证

    如果不懂,请追问,祝学习进步!O(∩_∩)O