S分为两部分,S1:y=√(R^2-x^2),S2:y=-√(R^2-x^2).
S1与S2在zox面上的投影区域都是D:-R≤x≤R,0≤z≤H.
dS=√[1+x^2/(R^2-x^2)+0]dzdx=R/√(R^2-x^2)dzdx
原积分
=∫∫(S1)dS/r^2+∫∫(S2)dS/r^2
=∫∫(D) 1/(R^2+z^2)×R/√(R^2-x^2)dzdx+∫∫(D)1/(R^2+z^2)×R/√(R^2-x^2)dzdx
=2∫∫(D) 1/(R^2+z^2)×R/√(R^2-x^2)dzdx
=2∫(0到H) 1/(R^2+z^2)dz ∫(-R到R) R/√(R^2-x^2)dx
=2×1/R×arctan(H/R)×R×π
=2πHarctan(H/R).