理解在这个题目中A集合其实是这两个函数的定义域,而B,C集合分别是这两个函数的值域,
C含于B的含义就是取定a的取值范围使得在A这样的一个定义域内,y=2x+3的最小值小于或等于y=x^2的最小值,y=2x+3的最大值大于或等于y=x^2的最大值
分别画出y=2x+3,y=x^2在区间|-2≤x≤a内的图像,
从图像上就能知道y=x^2在区间|-2≤x≤0内单调递减,在大于0的区间内都递增,所以y=x^2的最小值至少是0.
而y=2x+3单调递增在-2处有最小值-1(小于0),
所以函数y=2x+3的最大值也要比y=x^2的大,由二次函数的对称性知道在区间|-2≤x≤2内y=x^2的最大值为4,而函数y=2x+3在x=1/2处就能取到4,且这个函数单调递增的,所以a至少等于1/2,
因为这两个函数在之后的区间都递增,而二次函数的增长比一次函数快,所以在x=3处二次函数的图像与一次函数的图像相交,且之后y=x^2的函数值都比y=2x+3的函数值大,也就不可能有C含于B了,所以1/2≤a≤3