The probability density function of a random variable X is f

2个回答

  • (a):Proof:E[aX+b] = Sum pi(axi +b)

    = Sum (pi (axi) + pi (b))

    = Sum (pi axi)+ Sum ( pi b)

    = aSum (pi xi)+ bSum ( pi),Sum( pi) = 1,所以 Sumaxi = aSxi

    = aE[X] + b

    (b) Proof:

    Var(X) = E([X-E(X)]2

    = E(X^2)-2XE(X) + E(X)^2,x=E(x)

    = E(X^2) -2E(X)E(X) + E(X)^2

    = E(X^2)-E(X)^2

    (c)

    Proof:Var[aX+b]

    = E([(aX + b)- E(aX + b)]^2)

    = (a^2E[X^2] + 2abE[X] +b^2) – (a^2E[X]^2+2abE[X]+b^2)

    = a^2E[X^2] - a^2E[X]^2

    = a^2(E[X^2] - E[X]^2)

    = a^2Var[X]