(1).
∵向量FA与x轴正向夹角为60°,
∴直线FA的斜率k=tan60°=√3,且A在F的右侧.
∴直线FA的方程是:y=√3(x-p/2)
将直线方程代入y²=2px
∴3(x-p/2)²=2px
∴3x²-3px+3p²/4 = 2px
∴ 12x²-20px+3p²=0
∴ (6x-p)(2x-3p)=0
∴ x=p/6或x=3p/2
∵ A在F右侧
∴ xA=3p/2,∴ yA=√3p
∴ |OA|=√(9p²/4+3p²)=√(21p)/2
(2)
F为抛物线C:y^2=4x的焦点,F(1,0),OF=1
AB的中点为M(2,2)
yA+yB=2yM=4
直线AB:y-2=k(x-2)
x=(y+2k-2)/k
y^2=4x=4*(y+2k-2)/k
ky^2-4y+8-8k=0
yA+yB=4/k
4/k=4
k=1
直线AB:y=x,经过原点O(0,0)
设xA=yA=0,xB=yB=4
方法一:
三角形ABF的面积=|OF|*|yB|/2=1*4/2=2
方法二:
AB=√(xB^2+yB^2)=√4^2+4^2)=4√2
点F(1,0)到直线AB的距离:L=1/√2
三角形ABF的面积=AB*L/2=4√2*(1/√2)/2=2
(3)
设过(4,0)的直线为 y=k(x-4),
联立y^2=4x
得(k^2)x^2-(8k^2+4)x+4k^2=0
于是y1^2+y2^2=4x1+4x2=4(x1+x2)=4(8k^2+4)/k^2=4(8+4/k^2)
=32+8/k^2.
显然,当K→∞,8/k^2→0,即当AB所在的直线⊥OX轴时Y1^2+Y2^2最小值是32