已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.

1个回答

  • 第一问时,如果按正常过程来做有点麻烦,所以我用了假设,第二问时我先算出BD直线的斜率求出BD,利用|(MD)|=|(MB)|=|(MK)|,(x)代表向量

    以下过程代表个人意见

    (1):AB直线(过K)设A(x1,y1)B(x2,y2)y=k(x+1)①,y²=4x②,①②→k²x²+(2k²-4)²+k²=0,x1+x2=(4-2k²)/k²③,x1x2=1④,y1y2=4⑨

    假设F在BD上(问题转化为证明D为A的对称点即可)→设BD直线y=m(x-1)⑤,设D(a,b)②⑤→m²x-(2m²+4)x-4x=0→a+x2=2+4/m²⑥,ax2=1⑦→by2=-4⑧

    ⑦④→a=x1,⑧⑨→y1=-b

    →D为A关于X轴的对称点(以上有些过程可省略~)

    (2):根据(1)→(FA)(FB)=8/9

    →(x1-1,y1)(x2-1,y2)=8/9

    →k²=36/55

    求出BD,AB直线方程即可,设圆心M(X,Y),M到直线BD,AB距离列出方程解答即可(我这种方法好像很麻烦,只是暂时没其他的解题方法)