解题思路:由已知条件可以证明△BED∽△BCA,然后根据其对应边成比例可将DE的长求出来,进而可求出AB的长,根据三角形的面积公式可求出结果.
在△AED中,∵DE⊥AB于E,
又∵DE:AE=1;5,
∴设DE=x,则AE=5x,
由勾股定理,AD2=AE2+ED2=(5x)2+x2=26x2,
∴AD=
26x.
在△ADC中,∵∠C=90°,∠ADC=45°,
∴∠DAC=45°.
由勾股定理,AC2+DC2=AD2=26x2,
∴AC=DC=
13x.
在Rt△BED中,∵ED=x,BE=3,
由勾股定BD2=ED2+BE2=x2+32=x2+9,
∴BD=
x2+9.
在Rt△BED和Rt△BCA中,
∵∠B是公共角,
∠BED=∠BCA=90°,
∴△BED∽△BCA,而AB=3+5x.
∴[ED/AC=
BD
BA].
即
x
13x=
x2+9
3+5x.
解关于x的方程3+5x=
13•
x2+9,
两边平方得:(3+5x)2=13•(x2+9),
化简得:2x2+5x-18=0,
即(x-1)(2x+9)=0,
∴x1=2 x2=-[9/2].
∵x=ED>0,
∴x=ED=2,AE=5x=10.
∴AB=AE+BE=10+3=13.
∴S△ABD=[1/2]ED•AB=[1/2]×2×13=13.
点评:
本题考点: 解直角三角形.
考点点评: 此题考查解直角三角形、直角三角形性质等知识,也考查逻辑推理能力和运算能力.此题比较难,综合性比较强.