∵BC=DC,∴∠CBD=1/2(180°-∠C)=90°-1/2∠C,
∵AB=AE,∴∠ABE=1/2∠180°-∠A)=90°-1/2∠A,
∴∠DBF=∠CBD+∠ABE-90°
=180°-1/2(∠C+∠A)-90°
=45° (∵∠ABC=90°,∴∠A+∠C=90°),
又DF⊥BE,
∴ΔBDF是等腰直角三角形,
∴DF=FB.
∵BC=DC,∴∠CBD=1/2(180°-∠C)=90°-1/2∠C,
∵AB=AE,∴∠ABE=1/2∠180°-∠A)=90°-1/2∠A,
∴∠DBF=∠CBD+∠ABE-90°
=180°-1/2(∠C+∠A)-90°
=45° (∵∠ABC=90°,∴∠A+∠C=90°),
又DF⊥BE,
∴ΔBDF是等腰直角三角形,
∴DF=FB.