∫1/(sinx)dx
=∫cscxdx
=∫sinx/(1-cos²x) dx
=-∫dcosx/(1-cos²x)
=-1/2[∫dcosx/(1-cosx)+∫dcosx/(1+cosx)]
= -1/2[∫-d(1-cosx)/(1-cosx)+∫d(1+cosx)/(1+cosx)]
=-1/2ln(1+cosx)/ (1-cosx)+C
=ln[(1-cosx)/sinx]+C
=ln(cscx-cotx)+C
∫1/(sinx)dx
=∫cscxdx
=∫sinx/(1-cos²x) dx
=-∫dcosx/(1-cos²x)
=-1/2[∫dcosx/(1-cosx)+∫dcosx/(1+cosx)]
= -1/2[∫-d(1-cosx)/(1-cosx)+∫d(1+cosx)/(1+cosx)]
=-1/2ln(1+cosx)/ (1-cosx)+C
=ln[(1-cosx)/sinx]+C
=ln(cscx-cotx)+C