a(sinx+1)≥-(3+sin^2(x))
-a≤[3+sin^2(x)]/(sinx+1)
令t=sinx
则-1/2≤t≤1
-a≤(3+t^2)/(1+t)={ [(t+1)-1]^2+1 }/(1+t)={ (t+1)^2-2(t+1)+2 }/(t+1)
-a≤[(t+1)+2/(t+1)-2]
恒小也就是左边的-a比右边的最小值还要小,而右边为:
(t+1)+2/(t+1)-2]≥2[√(t+1)*2/(t+1)]-2=2√2-2(当且仅当(t+1=2/(t+1)即,t=√2-1时,取=)
所以-a≤2√2-2
a≥2-2√2