已知tan=3
2sinα-3cosα/sinα-cosα
=2sinα-2cosα-cosα/sinα-cosα
=(2sinα-2cosα/sinα-cosα)-(cosα/sinα-cosα)
=2-(cosα/sinα-cosα)
=2-{1/(sinα-cosα/cosα)}
=2-{1/(tanα-1)}
=2-{1/(3-1)}
=1.5
(2) -2sinαcosα
令其1/(sinαcosα )
=(sin²α+cos²α)/(sinαcosα )
=(sinα/cosα)+(cosα/sinα)
=(tanα)+(1/tanα)
=3+1/3
=10/3
则sinαcosα=3/10
(-2sinαcosα )=-2x(3/10)=-3/5
(3)sin²α-2cos²α+1
{(sin²α-2cos²α)/sinαcosα}sinαcosα+1
={sinα/cosα-2cosα/sinα/sinαcosα}+1
={tanα-2/tanα}sinαcosα+3/10
=(3-2/3)3/10+3/10
=7/10
已知:sinα+cosα=1/2
则将其平方,cos²α+2sinαcosα+sin²α=1/4
>1+2sinαcosα=-3/4
>2sinαcosα=-3/4
>sinαcosα=-3/8
则将其三处方,(cos²α+2sinαcosα+sin²α)(sinα+cosα)=
sinαcos²α+2sin²αcosα+sin³α+cos³α+2sinαcos²α+sin²αcosα=1/8
>3sinαcos²α+3sin²αcosα+sin³α+cos³α=1/8
>3sinαcosα(sinα+cosα)+sin³α+cos³α=1/8
>3x(-3/8)x(1/2)+sin³α+cos³α=1/8
>sin³α+cos³α=1/8-9/16
>sin³α+cos³α=-7/16
sin⁴α+cos⁴α
已知(sin³α+cos³α)(sinα+cosα)=(-7/16)x(1/2)=-7/32
>sin⁴α+sin³αcosα+cos⁴α+sinαcos³α=-7/32
>sin⁴α+cos⁴α+(sin³αcosα+sinαcos³α)=-7/32
>sin⁴α+cos⁴α+sinαcosα(cos²α+sin²α)=-7/32
>sin⁴α+cos⁴α+sinαcosα=-7/32
>sin⁴α+cos⁴α-3/8=-7/32
>sin⁴α+cos⁴α=5/32