1.已知tan=3,求(1) 2sinα-3cosα/sinα-cosα (2) -2sinαcosα (3)sinα&

2个回答

  • 已知tan=3

    2sinα-3cosα/sinα-cosα

    =2sinα-2cosα-cosα/sinα-cosα

    =(2sinα-2cosα/sinα-cosα)-(cosα/sinα-cosα)

    =2-(cosα/sinα-cosα)

    =2-{1/(sinα-cosα/cosα)}

    =2-{1/(tanα-1)}

    =2-{1/(3-1)}

    =1.5

    (2) -2sinαcosα

    令其1/(sinαcosα )

    =(sin²α+cos²α)/(sinαcosα )

    =(sinα/cosα)+(cosα/sinα)

    =(tanα)+(1/tanα)

    =3+1/3

    =10/3

    则sinαcosα=3/10

    (-2sinαcosα )=-2x(3/10)=-3/5

    (3)sin²α-2cos²α+1

    {(sin²α-2cos²α)/sinαcosα}sinαcosα+1

    ={sinα/cosα-2cosα/sinα/sinαcosα}+1

    ={tanα-2/tanα}sinαcosα+3/10

    =(3-2/3)3/10+3/10

    =7/10

    已知:sinα+cosα=1/2

    则将其平方,cos²α+2sinαcosα+sin²α=1/4

    >1+2sinαcosα=-3/4

    >2sinαcosα=-3/4

    >sinαcosα=-3/8

    则将其三处方,(cos²α+2sinαcosα+sin²α)(sinα+cosα)=

    sinαcos²α+2sin²αcosα+sin³α+cos³α+2sinαcos²α+sin²αcosα=1/8

    >3sinαcos²α+3sin²αcosα+sin³α+cos³α=1/8

    >3sinαcosα(sinα+cosα)+sin³α+cos³α=1/8

    >3x(-3/8)x(1/2)+sin³α+cos³α=1/8

    >sin³α+cos³α=1/8-9/16

    >sin³α+cos³α=-7/16

    sin⁴α+cos⁴α

    已知(sin³α+cos³α)(sinα+cosα)=(-7/16)x(1/2)=-7/32

    >sin⁴α+sin³αcosα+cos⁴α+sinαcos³α=-7/32

    >sin⁴α+cos⁴α+(sin³αcosα+sinαcos³α)=-7/32

    >sin⁴α+cos⁴α+sinαcosα(cos²α+sin²α)=-7/32

    >sin⁴α+cos⁴α+sinαcosα=-7/32

    >sin⁴α+cos⁴α-3/8=-7/32

    >sin⁴α+cos⁴α=5/32