已知f(x)=sin(2x+[π/6])+[3/2],x∈R.

1个回答

  • (1)∵f(x)=sin(2x+[π/6])+[3/2],∴当2x+[π/6]=2kπ-[π/2],k∈z,即x=kπ-[π/3]时,函数f(x)取得最小值为-1+[3/2]=[1/2].

    (2)令 2kπ-[π/2]≤2x+[π/6]≤2kπ+[π/2],k∈z,求得 kπ-[π/3]≤x≤kπ+[π/6],

    故函数的增区间为[kπ-[π/3],kπ+[π/6]],k∈z.

    (3)把函数y=sinx的图象向左平移[π/6]个单位可得函数y=sin(x+[π/6])的图象,

    再把所得图象上各点的横坐标变为原来的[1/2]倍,纵坐标不变,可得函数y=sin(2x+[π/6])的图象,

    再把所得图象向上平移[3/2]个单位,可得函数f(x)=sin(2x+[π/6])+[3/2] 的图象.