|x/(x-2) |>x/(x-2)
设:f(x)=|x/(x-2)|-x/(x-2)
1、当x>2时:
f(x)=|x/(x-2)|-x/(x-2)
f(x)=x/(x-2)-x/(x-2)
f(x)=0
有:|x/(x-2)|=x/(x-2);
2、当0≤x<2时:
f(x)=|x/(x-2)|-x/(x-2)
f(x)=-x/(x-2)-x/(x-2)
f(x)=-2x/(x-2)
因为:x-2<0、-2x≤0
所以:f(x)≥0
有:|x/(x-2)|≥x/(x-2),只有x=0时,等号成立;
3、当x<0时:
f(x)=|x/(x-2)|-x/(x-2)
f(x)=x/(x-2)-x/(x-2)
f(x)=0
有:|x/(x-2)|=x/(x-2).
综合以上,若要|x/(x-2)|>x/(x-2),
必有0<x<2
即,所求解集是:x∈(0,2).