设锐角三角形ABC对应3条边为 a≤b≤c
那么正方形一条边在BC=a上的为面积最大的正方形.
画法如图:
1. 在AB(或AC)边上远离A处取一点P做正方形 PQNM,NM在BC上,Q在三角形内.
2. 做射线BQ交AC于E点
3. 做EH垂直BC,EF//BC,FG垂直BC.得四边形 EFGH
则四边形EFGH 即是三角形ABC内面积最大的正方形.
设锐角三角形ABC对应3条边为 a≤b≤c
那么正方形一条边在BC=a上的为面积最大的正方形.
画法如图:
1. 在AB(或AC)边上远离A处取一点P做正方形 PQNM,NM在BC上,Q在三角形内.
2. 做射线BQ交AC于E点
3. 做EH垂直BC,EF//BC,FG垂直BC.得四边形 EFGH
则四边形EFGH 即是三角形ABC内面积最大的正方形.