解题思路:先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.
∵a>0,
∴二次函数开口向上;
又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,
所以此二次函数与x轴没有交点,所以b2-4ac<0.
故选:A.
点评:
本题考点: 抛物线与x轴的交点.
考点点评: 此题考查了二次函数的开口方向、顶点坐标与x轴交点情况之间的联系.
解题思路:先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.
∵a>0,
∴二次函数开口向上;
又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,
所以此二次函数与x轴没有交点,所以b2-4ac<0.
故选:A.
点评:
本题考点: 抛物线与x轴的交点.
考点点评: 此题考查了二次函数的开口方向、顶点坐标与x轴交点情况之间的联系.