求证2^0+2^1+2^2+……+2^(n-1)=(1-2^n)/(1-2)
1个回答
令S=2^0+2^1+2^2+……+2^(n-1) ①
那么2S=2^1+2^2+...+2^n②
①-②得到
(1-2)S=1-2^n
所以S=(1-2^n)/(1-2)
相关问题
求证0^2+1^2+2^2+…+(n-1)^2与[n*(n-1)*(2n-1)]/6的关系,
求证n≥2 ,n为正整数时,求证4/7≤1/(n+1)+1/(n+2)+...+1/(2n-1)+1/2n<√2/2
求证:1+1/2+1/3+···+1/2^n>n+2/2 (n≥2)
归纳法求证1^2/(1*3)+2^2/(3*5)+...+n^2/(2n-1)(2n+1)=n(n+1)/[2(2n+1
求证:2n−C1n•2n-1+C2n•2n-2+…+Cn−1n•2+(-1)n=1.
求证(1-1/2^2)(1-1/3^2)...(1-1/n^2)=(n+1)/2n,
求证:C0n+2C1n+3C2n+…+(n+1)Cnn=2n+n•2n-1.
求证1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n
n≥2 ,n为正整数时,求证4/7≤1/(n+1)+1/(n+2)+...+1/(2n-1)+1/2n<√2/2
求证:1-1/2+1/3-1/4+...-1/2n=1/(n+1)+1/(n+2)+...+1/2n