已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n∈N*)

3个回答

  • 由a1 = 1,

    a1 + 2a2 + 3a3 + ...+ nan = ((n + 1) / 2)a(n + 1) (*)

    (*)式取n = 1 得 a2 = 1

    当k ≥ 3时

    [(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] / 2

    整理得 a(n + 1) / an = 3n / (n + 1)

    a(n + 1) = a2 * (a3 / a2) * (a4 / a3) * ...* (a(n + 1) / an)

    = (3 * 2 / 3) * (3 * 3 / 4) * ...* (3 * n / (n + 1))

    = 2 * 3^(n - 1) / (n + 1)

    a1 = 1

    an = (2 / n) * 3^(n - 2) 当n ≥ 2

    应该是n*2an吧 否则太难了

    设 bn = n*2an

    b1 = 2,

    bn = 4 * 3^(n - 2) n ≥ 2 是等比数列

    从而 Tn = 2 + 4 * (1 - 3^(n - 1)) / (1 - 3)

    = 2 * 3^(n - 1)

    恰好对n = 1,2,...成立.