设A(X1,Y1),B(X2,Y2),则X1^2/4+Y1^2/3=1,X2^2/4+Y2^2/3=1,两式相减得
(X1+X2)(X1-X2)/4+(Y1+Y2)(Y1-Y2)/3=0,得K=(Y1-Y2)/(X1-X2)=-(3(X1+X2))/(4(Y1+Y2))
=-3/4,即可求方程
设A(X1,Y1),B(X2,Y2),则X1^2/4+Y1^2/3=1,X2^2/4+Y2^2/3=1,两式相减得
(X1+X2)(X1-X2)/4+(Y1+Y2)(Y1-Y2)/3=0,得K=(Y1-Y2)/(X1-X2)=-(3(X1+X2))/(4(Y1+Y2))
=-3/4,即可求方程