解题思路:根据对顶角相等和三角形内角和外角的关系解答即可.
(1)∠APB=120°
图1:∵△ABC是正三角形,
∴∠ABC=60°.
∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,
∴∠BAM=∠CBN,
又∵∠APN=∠BPM,
∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°,
∴∠APB=180°-∠APN=120°;
(2)同理可得:∠APB=90°;∠APB=72°.
(3)由(1)可知,∠APB=所在多边形的外角度数,故在图n中,[360°/n].
点评:
本题考点: 正多边形和圆;圆周角定理.
考点点评: 此题是一道规律探索题,体现了探索发现的一般规律:通过计算得出特殊多边形中的角∠APN的度数,然后得出n边形的∠APN的度数.