(c1/b1)+(c2/b2)+(c3/b3).+(cn/bn)=2n+1 (1)
(c1/b1)+(c2/b2)+(c3/b3).+(cn-1/b-14n)+=2(n-1)+1 =2n-1 (2)
(1)-(2)得 cn/bn=2
所以cn=2bn=2*3^(n-1)
c1+c2+c3+...+c2008
=2(b1+b2+b3+...+b2008)
=2(1-3^2008)/(1-3)
=3^2008-1
(c1/b1)+(c2/b2)+(c3/b3).+(cn/bn)=2n+1 (1)
(c1/b1)+(c2/b2)+(c3/b3).+(cn-1/b-14n)+=2(n-1)+1 =2n-1 (2)
(1)-(2)得 cn/bn=2
所以cn=2bn=2*3^(n-1)
c1+c2+c3+...+c2008
=2(b1+b2+b3+...+b2008)
=2(1-3^2008)/(1-3)
=3^2008-1