由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以 ab+1/b=a+1/b =1/(1-c)+c/(c-1) =1/(1-c)-c/(1-c) =(1-c)/(1-c) =1
由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以 ab+1/b=a+1/b =1/(1-c)+c/(c-1) =1/(1-c)-c/(1-c) =(1-c)/(1-c) =1