1/(x-3)-27/(x³-27)=【(x²+3x+9)-27】/(x³-27)=(x²+3x-18)/(x³-27)=(x+6)(x-3)/(x-3)(x²+3x+9)=(x+6)/(x²+3x+9)
所以当x→3时,lim【1/(x-3)-27/(x³-27)】=(3+6)/(9+3*3+9)=1/3
1/(x-3)-27/(x³-27)=【(x²+3x+9)-27】/(x³-27)=(x²+3x-18)/(x³-27)=(x+6)(x-3)/(x-3)(x²+3x+9)=(x+6)/(x²+3x+9)
所以当x→3时,lim【1/(x-3)-27/(x³-27)】=(3+6)/(9+3*3+9)=1/3