设logX=Y,代入原方程,有:
Y^2+(lob3+log2)Y+log3log2=0
(Y+log3)(Y+log2)=0
Y+log3=0,或:Y+log2=0
解得:
Y1=-log3=log(1/3)
Y2=-log2=log(1/2)
即:
logX1=log(1/3)
logX2=log(1/2)
所以:
X1=1/3
X2=1/2
设logX=Y,代入原方程,有:
Y^2+(lob3+log2)Y+log3log2=0
(Y+log3)(Y+log2)=0
Y+log3=0,或:Y+log2=0
解得:
Y1=-log3=log(1/3)
Y2=-log2=log(1/2)
即:
logX1=log(1/3)
logX2=log(1/2)
所以:
X1=1/3
X2=1/2