一个圆盘边缘系一根细绳,绳的下端拴着一个质量为m的小球,圆盘的半径是r,绳长为l,圆盘匀速转动时小球随着一起转动,并且细

1个回答

  • 解题思路:小球随着一起转动时在水平面内做匀速圆周运动,由重力和细绳拉力的合力提供向心力,根据牛顿第二定律求解转速.

    以小球为研究对象,由题可知,小球在水平面内做匀速圆周运动,半径为R=lsinθ+r,由重力和细绳拉力的合力

    提供向心力,力图如图.设转速为n,则由牛顿第二定律得

    mgtanθ=m(2πn)2R

    又 R=lsinθ+r

    得到 n=

    1

    gtanθ

    lsinθ+r

    故答案为:

    1

    gtanθ

    lsinθ+

    点评:

    本题考点: 牛顿第二定律;线速度、角速度和周期、转速;向心力.

    考点点评: 本题是圆锥摆问题,容易出错的地方是圆周运动半径的确定,不等于细绳的长度,也不等于lsinθ,是轨迹圆的半径,由几何知识确定.