OM=OA+AM=OA+2/3 AB
=OA+2/3(OB-OA)=1/3 OA+2/3 OB
=1/3 a+2/3 b
OP与OM在同一直线上,那设OP=x{1/3 a+2/3 b}... (1)
同理NP与NB在同一直线上,设NP=yNB,
则有OP=ON+NP=ON+yNB=ON+y(OB-ON)
=(1-y) ON+yOB=3/4(1-y) OA+yOB
=3/4(1-y)a+yb...(2)
由(1)(2)两式相等,其系数要相等,可以解得
y=3/5, x=9/10 ;OP=(3/10) a+(3/5) b.
法二,过M作MG平行于BN交OA于G
易证OM:MG=OP:PM=9:1
即OP=9/10OM=9/10(1/3 a+2/3 b)=(3/10) a+(3/5) b.