设首项为a1,公差为d,则有:S1+S3=a1+a1+a2+a3=4a1+3d=7/2
∵a4,a8,a16依次等比数列
∴a8²=a4a16即(a1+7d)²=(a1+3d)(a1+15d)化简得a1d-d²=0
∵公差d≠0
∴a1-d=0即a1=d,代入4a1+3d=7/2解得a1=d=1/2
∴an=1/2+(n-1)/2=n/2 a(n+1)=(n+1)/2 ana(n+1)=n(n+1)/4=(n²+n)/4
Sn=n/2+n(n-1)/2×1/2=(n²+n)/4,得证
设首项为a1,公差为d,则有:S1+S3=a1+a1+a2+a3=4a1+3d=7/2
∵a4,a8,a16依次等比数列
∴a8²=a4a16即(a1+7d)²=(a1+3d)(a1+15d)化简得a1d-d²=0
∵公差d≠0
∴a1-d=0即a1=d,代入4a1+3d=7/2解得a1=d=1/2
∴an=1/2+(n-1)/2=n/2 a(n+1)=(n+1)/2 ana(n+1)=n(n+1)/4=(n²+n)/4
Sn=n/2+n(n-1)/2×1/2=(n²+n)/4,得证