对坐标的曲面积分∫∫(xz)dxdy其中是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧
1个回答
原式=∫xdx∫dy∫dz (应用奥高公式)
=∫xdx∫(1-x-y)dy
=(1/2)∫x(1-x)^2dx
=(1/2)(1/2-2/3+1/4)
=1/24.
相关问题
∫∫xdydz,其中∑是z=x^2+y^2及z=1所围成的空间区域的整个边界曲面的外侧
设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
求曲面z=x+y z=xy x+y=1 x=0 y=0所围闭区域体积
若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy=
曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成
计算曲面积分ff(xdydz+z平方dxdy)/x2+y2+z2,其中积分区域为曲面x2+y2=a2与平面z=a及z=-
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥
利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy,为曲面z=x2+y2,z=1所围成的空间闭区域
曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0