解由f(x)
=a*b=sin(2x+θ)+√3cos(2x+θ)
=2[1/2sin(2x+θ)+√3/2cos(2x+θ)]
=2sin(2x+θ+π/3)
又由函数f(x)=ab为偶函数,且θ∈[0,π]
则θ+π/3=π/2
即θ=π/6
故f(x)=2sin(2x+π/6+π/3)
=2sin(2x+π/2)
=2cos2x
2由x∈(0,π/2)
则2x∈(0,π)
又由f(x)=2cos2x=1
即cos2x=1/2
故2x=π/3
即x=π/6.
解由f(x)
=a*b=sin(2x+θ)+√3cos(2x+θ)
=2[1/2sin(2x+θ)+√3/2cos(2x+θ)]
=2sin(2x+θ+π/3)
又由函数f(x)=ab为偶函数,且θ∈[0,π]
则θ+π/3=π/2
即θ=π/6
故f(x)=2sin(2x+π/6+π/3)
=2sin(2x+π/2)
=2cos2x
2由x∈(0,π/2)
则2x∈(0,π)
又由f(x)=2cos2x=1
即cos2x=1/2
故2x=π/3
即x=π/6.