f(x)=x³-x+c
则:
f'(x)=3x²-1=3(x-√3/3)(x+√3/3)
则函数f(x)在[-1,-√3/3]上递增,在[-√3/3,√3、3]上递减,在[-√3/3,1]上递增,且:
f(-1)=c;f(-√3/3)=(2/9)√3+c;f(√3/3)=-(2/9)√3+c;f(1)=c
在函数f(x)在[-1,1]上的最小值是f(-√3/3)=-(2/9)√3+c,最大值是f(√3/3)=(2/9)√3+c
第二问中的:a>|f(x1)-f(x2)|,即只要a大于|f(x1)-f(x2)|的最大值即可,而|f(x1)-f(x2)|的最大值就是|f(-√3/3)-f(√3/3)|=(4/9)√4,则:a>(4/9)√3