y=(1+sinx)/(2+cosx)
求极值点:
y'=[cosx(2+cosx)+sinx(1+sinx)]/(2+cosx)^2=(2cosx+sinx+1)/(2+cosx)^2=0,得:
2cosx+sinx+1=0
√5sin(x+t)=-1 t=arctan2
sin(x+t)=-1/√5=-cost=sin(t-π/2)
x+t=t-π/2+2kπ,或x+t=(2k-1)π-t+π/2
即x=(2k-1/2)π 或x=(2k-1/2)π-2t
1)x=(2k-1/2)π时,y=0,此为极小值,也为最小值.
2)x=(2k-1/2)π-2t时,y=(1-cos2t)/(2-sin2t)
sin2t=2*2/(1+2^2)=4/5
cos2t=(1-2^2)/(1+2^2)=-3/5
因此y=(1+3/5)/(2-4/5)=4/3,此为极大值,也为最大值.