已知函数y=-(x-1)²+1,当t≤x≤t+1时,求函数的最小值和最大值
3个回答
对称轴为x=1 开口向下
故当t>=1时,则函数当t≤x≤t+1时,为减
则此时最小值为f(t),最大值为f(t+1)
当t+1
相关问题
【高一数学】已知函数y=x²-2x+3,当x∈[t,t+1]时,求这个函数的最大值和最小值
求函数y=2x²+x-1在区间[t,t+1]上的最大值和最小值
已知函数y=x²-2x,x∈[t,t+1],求函数在[t,t+1]上取最小值
已知函数y=-x^+8x,x∈「t,t+1」,求函数f(x)的最大值h(t)
当1≤x≤2时,求函数y=-x²-x+1的最大值和最小值
求函数y=2x^2+x-1在[t,t+1]区间上的最大值和最小值
若函数f(x)=x的平方-2x+2,当t≤x≤t+1时,最小值为g(t),求函数g(t)当t∈[-3,2]时的最值.
高一的一道求函数最值的题目y=x^2+2x+2,x∈[t,t+1],求最大值和最小值
已知函数f(x)=(x-1)/(x+1),x∈[1,3],求函数的最大值和最小值
求函数y=x^2-4x+1在x属于[t,4]上的最小值和最大值,其中t