1)易知|a|=1,|b|=1
由|ka+b|=√3|a-kb|,平方,得
(ka+b)²=3(a-kb)²
k²a²+2kab+b²=3a²-6kab+3k^2b²
2k²-8kab+2=0
ab=(2+2k²)/(8k)=(1+k^2)/4k=1/(4k)+k/4≥2√(1/16)=1/2
即ab的最小值是1/2.
(2) ab=1/2cosx+√3/2sinx=sin(x+π/6),
0≤x≤π,π/6≤x+π/6≤7π/6
-1/2≤sin(x+π/6)≤1
从而 ab的最大值为1,此时有x+π/6=π/2,
即有x=π/3