∫(2^tan1/x)/(x^2*cos^2 1/x)dx
3个回答
应用凑微分法
dtan1/x=-(sec1/x)^2/x^2
所以原式=∫-2^(tan1/x)dtan1/x
=-(2^tan1/x)/(ln2) + C
相关问题
∫ 1/x^2(tan1/x)dx
求下列不定积分∫x^4/1+x^2dx ∫(2sinx-1/2cosx)dx ∫(1+cos^2x/1+cos2x)dx
1、∫x√x^2+1dx2、∫e^xsin(e^x-2)dx3、∫(lnx/x)dx4、∫(1/x^2)乘tan(1/x
∫ (1+cos^2 x)/cos^2 x dx =
求证 (1—tan^2X)/(1+tan^2X)=cos^2X—sin^2X
求∫1/tan^2x+sin^2x dx
(2sin^2x-sinxcosx+cos^2x)/sin^2x+cos^2x=(2tan^x-tanx+1)/(tan
∫1/[2+tan^2(x)]dx=多少
1-cos2x/1+cos2x=tan的平方x
化简(cos2x-sin2x)/(1-cos2x)(1-tan2x)