解题思路:(Ⅰ)△ABD中根据中位线定理,得EF∥AD,结合AD⊥BD得EF⊥BD.再在等腰△BCD中,得到CF⊥BD,结合线面垂直的判定定理,得出BD⊥面EFC,从而得到平面EFC⊥平面BCD.
(2)根据平面ABD⊥平面BCD,结合面面垂直的性质定理,可证出AD⊥面BCD,得AD是三棱锥A-BCD的高,计算出等边△BCD的面积,利用锥体体积公式算出三棱锥A-BCD的体积,即可得到三棱锥B-ADC的体积.
(Ⅰ)∵△ABD中,E、F分别是AB,BD的中点,
∴EF∥AD.…(1分)
∵AD⊥BD,∴EF⊥BD.…(2分)
∵△BCD中,CB=CD,F是BD的中点,∴CF⊥BD.…(3分)
∵CF∩EF=F,∴BD⊥面EFC.…(5分)
∵BD⊂面BDC,∴平面EFC⊥平面BCD.…(6分)
(Ⅱ)∵面ABD⊥面BCD,面ABD∩面BCD=BD,AD⊥BD,
∴AD⊥面BCD,得AD是三棱锥A-BCD的高.…(8分)
∵BD=BC=1且CB=CD,∴△BCD是正三角形.…(10分)
因此,S△BCD=
1
2×1×
3
2=
3
4,
∴三棱锥B-ADC的体积为VB−ACD=VA−BCD=
1
3S△BCD•AD=
1
3×
3
4×1=
3
12.…(12分)
点评:
本题考点: 平面与平面垂直的判定;棱柱、棱锥、棱台的体积.
考点点评: 本题在特殊的四面体中,证明面面垂直并且求锥体的体积,着重考查了线面垂直、面面垂直的判定与性质和锥体体积公式等知识,属于基础题.