如何证明圆的直径所对的圆周角是直角

1个回答

  • 先作一个圆,再以圆的直径为一边做一个圆周角,设圆心为O,直径与圆的2个交点为B、C,点A为三角形ABC上的另一个点,与圆相交于点A,图就自己画一下证明:连接AO,因为圆的半径相等所以OA=OB=OC 所以三角形OAB与三角形OAC为等腰三角形,角OBA=角OAB,角OAC=角OCA 角BAC=角OAB+角OAC =(180度-角AOB)/2+(180度-角AOC)/2 =(180度-角AOB)/2+[180度-(180-角AOB)/2 =(180度-角AOB)/2+(180度-180+角AOB)/2 =(180度-角AOB+180度-180度+角AOB)/2 =180度/2 =90度不清楚再问我