分两种情况证明;
(1)若三个数位上的数字全相同,所得数为0,显然成立;
(2)若三个数位上的数字不完全相同,
不妨设这个三位数为
.
abc ,a≥b≥c,且a≥c+1,
所以
.
abc -
.
cba =99(a-c)=100(a-c-1)+10×9+(10+c-a),
因此所得的三位数中必有一个9,而另外两个数字之和为9;
共有990,981,972,963,954五种情况;
以990为例得,990-099=891,
981-189=792,
972-279=693,
963-369=594,
954-459=495,
…
由此可知最后得到495数就会循环,重复2003次后所得的数是495.