(sin^2x+√2sinxcosx-cos^2x)/(sin^2x+2cos^2x)=(tan²x+√2tanx-1)/(tan²x+2)
(1+tanx)/(1-tanx)=3+2√2
tanx=√2/2
(sin^2x+√2sinxcosx-cos^2x)/(sin^2x+2cos^2x)=(tan²x+√2tanx-1)/(tan²x+2)=1/5
sinθ/(1-1/tanθ)+cosθ/(1-tanθ)=sinθ/(1-cosθ/sinθ)+cosθ/(1-sinθ/cosθ)=sinθ+cosθ=(√3+1)/2