f(x)=向量AB×向量BC
=AB×BC×cos∠ABC
=AB×BC×cos(2π/3)
=AB×BC×-1/2
BC/sinx=AC/sin∠ABC(正弦定理)
BC=(sinx×AC)/sin∠ABC=2√3sinx/3
因为∠ACB=π-2π/3-x=π/3-x
同理AB/sin(π/3-x)=AC/sin∠ABC
AB=(sin(π/3-x)×AC)/sin∠ABC
=2√3sin(π/3-x)/3
将AB,BC代入
得f(x)=2√3sinx/3×2√3sin(π/3-x)/3×-1/2
=(-sinx×sin(π/3-x))/3
定义域为(0,π/3)